============ tilepix.fits ============ :Summary: This file maps which DESI tiles overlap which HEALpix pixels (nested nside=64). :Naming Convention: ``tilepix.fits`` :Regex: ``tilepix\.fits`` :File Type: FITS, 630 KB Contents ======== ====== ======= ======== =================== Number EXTNAME Type Contents ====== ======= ======== =================== HDU0_ IMAGE Blank HDU1_ TILEPIX BINTABLE table with healpix:tile mapping ====== ======= ======== =================== FITS Header Units ================= HDU0 ---- Empty HDU. HDU1 ---- EXTNAME = TILEPIX Table mapping tile petals to HEALPix pixels (nested nside=64). Required Header Keywords ~~~~~~~~~~~~~~~~~~~~~~~~ .. collapse:: Required Header Keywords Table .. rst-class:: keywords ======== ============= ==== ===================== KEY Example Value Type Comment ======== ============= ==== ===================== NAXIS1 9 int length of dimension 1 NAXIS2 70894 int length of dimension 2 HPXNSIDE 64 int HPXNEST T bool ======== ============= ==== ===================== Required Data Table Columns ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. rst-class:: columns ========= ======= ===== =========== Name Type Units Description ========= ======= ===== =========== TILEID int32 DESI Tile ID SURVEY char[7] DESI survey (sv1, sv3, main...) PROGRAM char[6] DESI program (dark, bright, ...) PETAL_LOC int16 Petal location 0-9 = spectrograph number HEALPIX int32 Nested nside=64 healpix number ========= ======= ===== =========== Notes and Examples ================== Each DESI tile has 10 petals/spectrographs, each of which overlaps multiple healpixels. Similarly, each healpixel could be covered by multiple tile petals. Since many DESI files are split by petal (spectrograph), this map gives the individual petal coverage as well, not just that the tile overlaps the healpixel. Example:: import numpy as np from astropy.table import Table tilepix = Table.read('tilepix.fits') #- All healpix that cover tile 100 (20 healpix) np.unique(tilepix['HEALPIX'][tilepix['TILEID']==100]) #- All tiles that cover healpix 11250 (28 tiles) np.unique(tilepix['TILEID'][tilepix['HEALPIX'] == 11250]) There is also a json version of this file with a dictionary structured as:: tilepix[tileid][petal] -> list of healpix covered by that tile+petal Due to limitations of the json format, the ``tileid`` and ``petal`` keys of the dictionary are strings, not integers.